3. Functions

Illustration for tasks 3.1. – 3.4.

The illustration shows the graph of a function f.

Task 3.1. (T 1.2015)

The range of the function *f* belongs to the following interval:

A. $\langle -1; 2 \rangle$ **B.** $\langle 0; 5 \rangle$ **C.** $\langle -5; 5 \rangle$ **D.** $\langle -5; 0 \rangle$

Task 3.2. (T 2.2015)

The zero of the function f is

A. x = -5 **B.** x = 0 **C.** x = 2 **D.** x = 5

Task 3.3. (T 3.2015)

The set of solutions of inequality $f(x) \leq -1$ is the following interval:

A. (2;5) **B.** (-5;2) **C.** (-5;1) **D.** (-1;5)

Task 3.4. (T 4.2015)

The graph of the function f is symmetrical about

Task 3.5. (T 5.2015)

The function g was plotted by translating the graph of the function f along one of the axes of the coordinate system (see illustration). The function g can be expressed in the following way:

A.
$$g(x) = f(x) - 1$$
 B. $g(x) = f(x+1)$ **C.** $g(x) = f(x-1)$ **D.** $g(x) = f(x) + 1$

Task 3.6. (T 14.2015 0 – 3 pts)

Given the function *f* with the formula $f(x) = -x^2 - 2x + 3$, complete the following sentences.

- The function *f* reaches the maximum value of for *x* equal to
- The value of the function for x = -5 is the same as for x equal to
- The function *f* has negative values if, and only if, the *x* values belong to the set.....

Task 3.7. (T 5.2016)

The linear function y = (3 - m)x + 6 has no *x*-intercepts when

A. m = 3 **B.** m = 0 **C.** m = 6 **D.** m = -3

Task 3.8. (T 6.2016)

The quadratic function f takes negative values for all arguments in the (-2, 3) interval and for no other arguments. The solution set for the inequality f(x - 3) < 0 is the interval

A. (-5; 0) **B.** (1; 6) **C.** (-2,3) **D.** (-3; 2)

Task 3.9. (T 18.2016, 0 – 2 pts)

The linear function *f* has the equation $f(x) = -\frac{1}{2}x + 13$. Complete the following sentences.

a) For the argument -4, the value of the function f equals

b) The *x*-intercept of the function equals

Task 3.10. (T 20.2016, 0 – 5 pts)

The following illustration shows the graph of the function f.

Complete the following sentences based on the illustration.

- a) The domain of the function is the set $D = \dots$
- b) The range of the function is $Z_w = \dots$
- c) The longest interval in which the function *f* decreases is
- d) The lowest value of the function *f* equals
- e) The solution set for the inequality f(x) < -1 is

Task 3.11. (T 6. 2017)

The graph of a linear function f is a line which crosses the axes of the coordinate system at K = (-5, 0) and L = (0, 7). Therefore, the equation of function f is:

A.
$$f(x) = -\frac{7}{5}x + 7$$
 B. $f(x) = \frac{7}{5}x + 7$ **C.** $f(x) = \frac{5}{7}x - 5$ **D.** $f(x) = -\frac{5}{7}x - 5$

Task 3.12. (T 15.2017, 0 – 5 pts)

The illustration shows the graph of a function f.

Complete the following sentences.

- a) The domain of function f is the set $D = \dots$
- b) The range of function f is $Z_w = \dots$
- c) The maximum of function *f* equals
- d) The longest interval in which function *f* is increasing is
- e) The number of *x*-intercepts of function *f* equals

Task 3.13 (T 5.2018)

The exponential function f is given by the equation $f(x) = 2^x$. The graph of a function g is obtained by translating the graph of function f three units upwards along the axis *OY*. Hence, function g is defined by the equation

A.
$$g(x) = 2^{x+3}$$
 B. $g(x) = 2^x + 3$ C. $g(x) = 2^{x-3}$ D. $g(x) = 2^x - 3$

Information for tasks 3.14 – 3.17.

The illustration shows the graph of a function f. It has two zeros which are both integers.

Task 3.14. (T 6.2018)

The domain of the function is the set:

A. $(-1; 16)$ B. $(-4; 16)$ C. $(-1; 4)$ D. $(-1; 4)$

Task 3.15. (T 7.2018)

The range of the function *f* is the set:

A. $\langle -1; 4 \rangle$ **B.** $\langle -1; 3 \rangle$ **C.** $\langle 0; 16 \rangle$ **D.** $\langle -4; 16 \rangle$

Task 3.16. (T 8.2018)

Function f reaches its minimum for:

А.	x = 0 and $x = 3$	В.	x = -1 and x = 2
C.	x = -1 and $x = -4$	D.	x = 2 and $x = 4$

Task 3.17. (T 9.2018)

The zeros of the function *f* are the numbers

A. 0 and 3 **B.** -1 and 2 **C.** -1 and -4 **D.** 2 and -4

Task 3.18. (T 16.2018, 0 – 3 pts)

A quadratic function *f* is given by the equation: $f(x) = 2x^2 - 8x - 10$. Complete the following sentences.

- a) The interval in which the function is decreasing is
- b) The range of the function is the interval:
- c) The function assumes non-negative values if and only if the *x* arguments belong to the set

Task 3.19 (T 4.2019)

The quadratic function f takes positive values for all xs within the interval (-8,16) and for no other xs. The solution set for the inequality f(x + 4) > 0 is the interval:

A. (-12; 20) **B.** (-4; 20) **C.** (-4; 12) **D.** (-12; 12)

Task 3.20 (T 5.2019)

The four functions: f1, f2, f3, f4 are defined for all real numbers by the following formulas:

 $f_1(x) = x^2 - x + 2019, \qquad f_2(x) = (x^2 + 2019) (x^2 + 1),$ $f_3(x) = -(x - 2019)(x^2 + 1), \qquad f_4(x) = -x^2 + 11x - 2019$ One of these functions has a zero. This function is:

A. f_1 **B.** f_2 **C.** f_3 **D.** f_4

Task 3.21 (T 4.2022)

The graph below shows function f.

Therefore,

A. f(1) - 2 = f(0) **B.** f(0) - 2 = f(2)**C.** f(1) - 2 = f(2) **D.** f(1) - 2 = f(-1)

Task 3.22 (T 10.2020)

The function f is given by the formula $f(x) = \left(\frac{9}{4}\right)^x$ for each real number x. For $x = -\frac{3}{2}$ the function f assumes the value of: A. $\frac{27}{8}$ B. $\frac{4}{9}$ C. $\frac{8}{27}$ D. $\frac{9}{4}$

Task 3.23 (T 18.2020)

The quadratic function *f* is given by the formula f(x) = -2(x + 1)(x - 3). Complete the following sentences.

- a) The axis of symmetry of the graph of the function *f* is a line given by the equation
- b) The least value of the function *f* in the interval $\langle -1, 2 \rangle$ equals

......

c) The area of a triangle whose vertices are the points of intersection of the graph of the function *f* with the axes of the coordinate system equal

.....

Task 3.24 (T 5.2021)

The graph of the function f(x) = (x + 6)(2x - 4) is a parabola whose vertex is a point with coordinates

A. (-6,4) **B.** (6,-4) **C.** (-6,2) **D.** (-2,-32)

Information for tasks 3.25 – 3.26

A function *f* assigns to each two-digit number *x* the remainder of the division of *x* by 7.

Task 3.25 (T 6.2021)

The set of values of the function *f* consists of

A. 10 elements B. 90 elements C. 7 elements D. 13 elements

Task 3.26 (T 7.2021)

The number of zeros of the function *f* is equal to

A. 10 elements B. 90 elements C. 7 elements D. 13 elements

Task 3.27 (T 8.2021)

The number of positive integers which belong to the set of values of the function $g(x) = -x^2 - 4x + 21$ is

Task 3.28 (T 4 - 4.1.2023)

A quadratic function *f* is given by the formula $f(x) = -\frac{1}{2}(x-1)^2 + 3$

One of the figures (A-D) below shows a part of the graph of the function f in the Cartesian coordinate system (x, y).

Complete the sentence. Select the correct answer from the options given below.

The part of the graph of the function f is shown in figure.

Complete the sentence so that it is true.

Task 3.30 (T 5 - 5.1.2023)

The figure shows the graph of a function f in the Cartesian coordinate system (x, y).

Complete the sentence. Select the correct answer from the options given below. The set of all solutions of the inequality f(x) < 4 is **A.** [1, 4) **B.** [-3, 3) **C.** [-3, -2) \cup (-1, 3) **D.** (-2, -1) \cup (3, 5)

Task 3.31 (T.5 – 5.2.2023)

Complete the following sentences so that they are true.

1. The domain of the function f is the interval

2. The range of the function *f* is

Task 3.32 (T.11.2023)

A linear function *g* is given by the formula g(x) = -2x + 6. The graph of a linear function *f* passes through the point P = (2, 3) and is perpendicular to the graph of the function *g*.

Complete the sentence. Select the correct answer from the options given below. The formula of the function f is

A.
$$f(x) = -2x + 3$$
 B. $f(x) = -2x + 7$ **C.** $f(x) = \frac{1}{2}x + 3$ **D.** $f(x) = \frac{1}{2}x + 2$

Task 3.33(T 3.2024)

A polynomial *W* is given by the formula $W(x) = x^6 - x^4 + 3x^2 - 3$.

Complete the sentence. Choose the correct answer from the options given below. One of the zeroes of this function is the number

A. 3 **B.** $-\frac{1}{3}$ **C.** -1 **D.** $\frac{1}{3}$

Task 3.34 (T 4 – 4.1.2024)

A quadratic function *f* is given by the formula $f(x) = -x^2 + 14x - 13$.

Decide if the following statements are true or false. Select 'T' if the statement is true, or 'F' if it is false.

The range of the function f is the interval $(-\infty, 36]$.	Т	F
The function <i>f</i> has no zeroes.	Т	F

Task. 3.35 (T 4 – 4.2.2024)

Complete the sentences. Select the correct answer from options A–D and E–H.

1. The formula of the function *f* in vertex form is

A.
$$f(x) = (x - 7)^2 + 36$$

B. $f(x) = -(x + 7)^2 - 36$
C. $f(x) = -(x - 7)^2 + 36$
D. $f(x) = (x + 7)^2 - 36$

2. The formula of the function *f* in factored form is

E.
$$f(x) = (x - 13)(x - 1)$$

F. $f(x) = (x + 1)(x + 13)$
G. $f(x) = -(x + 13)(x + 1)$
H. $f(x) = -(x - 1)(x - 13)$

Task 3.36 (T 5 - 5.1.2024)

The figure shows the graph of a function f in the Cartesian coordinate system (x, y).

Complete the sentence. Choose the correct answer from the options given below.

The function f has a value of 5 for

A. exactly one argument.

B. exactly two arguments.

C. exactly three arguments. **D.** an infinite number of arguments.

Task 3.37 (T 5 - 5.2.2024)

Complete the sentence so that it is true. Write the correct numbers in the blanks.

The smallest value of the function f is, and the largest value of this function is